关于五年级数学说课稿范文锦集8篇
作为一名教师,通常需要用到说课稿来辅助教学,说课稿可以帮助我们提高教学效果。快来参考说课稿是怎么写的吧!以下是小编为大家收集的五年级数学说课稿8篇,欢迎阅读与收藏。
五年级数学说课稿 篇1各位老师:
大家好!
我说课的内容是苏教版五年级下册第一单元《方程》第一课时的内容.下面从教材分析、学情分析、教学目标分析、教学重难点分析、教法与学法分析、教学设计等几个方面进行说课.
一、教材分析
《方程》是在学生已经学过用字母表示数的基础上展开的,为下面等式的性质和解方程的教学作铺垫,有着承前启后的重要作用.同时,方程作为一种重要的数学思想方法,对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义.
二、学情分析
1.小学生的心理特点
小学生年幼好动,有强烈的好奇心,注意力分散,因此,我采用形象生动、形式多样的教学方法,激发学生的学习兴趣,培养学生的能力.
2.学生的知识结构
学生已经完成了整数、小数的认识及其四则运算的学习,积累了较多的数量关系的知识,是在学会用字母表示数的基础上学习方程知识的.
三、教学目标分析
根据新课程标准的要求、教材编写意图、五年级学生的认知规律和已有的知识结构,制订如下教学目标:
知识目标:理解方程的含义,初步体会等式与方程的关系.
能力目标:通过将现实问题抽象成等式与方程的过程,培养学生“从具体到抽象”“从特殊到一般”的归纳概括能力.
情感目标:创设问题情境,激发学生观察、分析、探求的学习激情,强化学生的参与意识及主体作用.
四、重、难点分析
方程作为一种重要的数学思想方法,是学生进一步学习数学和其他学科的重要基础.因此,本节课的重点确定为:理解方程的含义.
小学生的认知水平还处在感性认识的阶段,要透过现象看本质,并上升到理论的高度还存在着很大困难,所以将理解等式与方程的关系确定为本节课的教学难点.
五、教法与学法分析
1.学法
叶圣陶先生说过:“教是为了不教.”我们不仅要教给学生知识,更要教会学生如何去学.因此,在学法中,让学生通过“感知交流→观察比较→得出概念→分析概念”的探究过程去发现新知,从而达到发展思维,提高能力的目的.
2.教法
建构主义学习理论认为,学习是学生自己进行知识建构的过程.因此,根据教学目标的要求和学生实际,我采用以小组合作观察探究为主,多媒体为辅的教学方式来培养学生自主学习的能力、观察探究的能力以及分析解决问题的能力.
六、教学过程
建构主义理论认为,学生在与学习环境相互作用的过程中,使自身的认知结构在“平衡→不平衡→新的平衡”的循环中得到不断的丰富、提高和发展.在该理论的指导下,我将按创设情境→观察探究→知识运用三个环节来组织教学.
1.创设情境——引入新知
我首先提供了天平平衡的情境图,通过“用等式表示天平两边物体的质量关系”的活动,引出“50+50=100”的等式,激活学生已经积累的关于等式的感性经验.这样,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征.
2.观察探究——形成概念
这部分是教学的重点,我采用以下几个步骤突出这个重点.
【感知交流】我提供了四幅天平图,让学生充分感知和交流,用式子表示天平两边物体的质量关系.通过展示图片,调动学生的学习积极性,同时培养学生自主学习的能力.
【观察比较】接着,我提出这些式子中“哪些是等式”的问题,引导学生通过进一步的观察和比较,认识到列出的式子中,两个式子是等式,还有两个式子不是等式.而这里的等式与前面的等式不同,它们都含有未知数.通过实验探究活动培养学生的观察能力和语言表达能力,充分体现自主、合作、探究的新课程理念.
【得出概念】通过引导学生主动发现方程的特点,并用自己的语言充分地表达,从而得出方程的概念,即 “像x+15=150,2x=200这样含有未知数的等式是方程”.培养学生从具体到抽象,从特殊到一般的归纳概括能力.
【分析概念】这部分是教学的难点,为突破这个难点,在得到方程概念的基础上,我及时组织学生讨论“等式和方程有什么关系”,帮助学生感受等式与方程的联系与区别,体会方程就是一种特殊的等式.这样做有助于培养学生的抽象思维能力和归纳概括能力.
3.知识运用
“试一试”通过列方程表示现实情境中数量间的相等关系,引导学生进一步理解方程的含义,体会方程的思想,并为进一步学习列方程解决实际问题作一些准备.
“练一练”安排了三道题.第一题采用学生抢答的方式,通过判断题中的式子哪些是等式,哪些是方程,引导学生体会等式与方程之间的逻辑联系,加深对方程含义的理解.第二题通过让学生写出一些方程在小组里交流,引导学生将已有的对方程的认识用外显的形式表达出来,促促进学生自主地建构方程的模型,内化方程的概念.第三题采用全班交流的方式,根据具体情境中的数量关系列方程,既有利于学生进一步熟悉列方程的思维特点,又有利于学生对方程含义的理解.
4.引导小结
本课的小结采用学生小结的模式,这是让学生学会自己梳理已经学习过的知识,然后我再对学生的小结进行总结.
5.布置作业
为了使所有学生巩固所学知识,我布置了必做题:要求学生每个人写一篇数学日记,即通过这节课的学习,有哪些收获,还有哪些疑问.同时又为学有余力的学生留有自由发展的空间,我布置了探究题.
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位老师批评指正.谢谢大家!
五年级数学说课稿 篇2各位领导、老师大家好!今天我说课的内容是九年义务教育新人教版小学数学五年级上册第五单元第三节新授课《梯形的面积》。它属于“空间与图形”学习领域的一节课,是多边形面积计算中的一部分。
这一教学内容是在学生经历了平行四边形和三角形面积公示的推导基础上通过转化的方法将梯形转化为已经学过的并且会计算面积的图形。但这节课比前两节课又有所提高,他要求学生用学过的方法推导,但又没有指明具体的方法不再给出具体的方法,从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。值得我们注意的是,联系前面两节的教学内容,不难看出,梯形面积计算公式的推导与平行四边形面积的计算关系最密切,且两者的教学思路也相似,同时梯形面积的教学与三角形面积的教学其公式的基本推导方法相同,除 ……此处隐藏7182个字……以小组为单位讨论一下看能不能找到计算它的方法?
反馈学生的讨论,明确转化原理,要学生说明是怎样想的,根据是什么?让学生在相互辩论中明确转化的原理。也由此达到突出重点解决难点的目的。
2、试做例题,掌握转化方法
明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:
①.学生试做“议一议”,21.6÷1.8,并讲出小数点移位的方法和理由。(板书:位移方法)
②.学生做“试一试”,(指名板演)
8÷2.5 (被除数末尾还要补“0”)
91.2÷3.8 (被除数恰好也成整数)
0.36÷1.2 (被除数仍是小数)
先各自说出小数点的处理方法,然后比较这三道题的不同,注意强调:被除数位数不够用“0”补足后再除。
③让学生观察黑板上的三道题,找出计算规律,.引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。
在得出计算方法后,注意强调:小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。
3、专项训练,增强“转化”技能
除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:A、被除数仍是小数;B、被除数恰好也成整数;C、被除数末尾还要补“0”。(板书这三种情况) 针对上述情况可作专项训练:
“练一练”第3题的前3题: 3.42÷4.5 9.6÷0.6 264÷6.6
4、总结移位方法并练习:
①.竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后新点上的小数点写清楚。做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。
(“练一练” 第3题的后3题。)
②.横式移位练习。练习在横式中移动小数点位置时,由于“1划、2移、3点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。
“练一练”第1题:学生独做,集体订正时说做题思路。
5、巩固练习:“练一练”
第2题:让学生弄清题意后自己解答。
第4题:先让学生弄清题意中的信息,再计算。(提示学生用计算器验算)
第5题:让学生独立完成。
五年级数学说课稿 篇8一、说设计理念
1、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
2、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容:
《分数的基本性质》一课是苏教版五年级下册第六单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变规律等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。要注意加强整数商不变规律的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、教学目标:
(1)理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变规律的关系。
(2)能运用分数的基本性质把一个分数化成指定分母或分子而大小不变的分数。
(3)经历探索分数基本性质的过程,感受“变与不变”数学思想方法。培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
3、教学重点:
理解和掌握分数的基本性质。
4、教学难点:
学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、启发式教学法:运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
3、直观演示法:验证时,先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
四、说学法
学生在学习分数的基本性质时,引导学生采用猜想验证法、操作体验法,从学生已有的知识经验出发,复习商不变的规律及分数与除法之间的关系,学生自然就想到分数中是否也存在类似的规律,然后让学生提出,进行验证。
古人云:“授之以鱼,不如授之以渔。”教师只是学生的组织者、合作者和引导者,学生才是学习的小主人。新课程提倡:过程重于结果。在探索和操作中我采用了观察、归纳和引导发现法。
五、教学过程:
本节课我打算采用“创设情境,感知规律--研究素材,猜测规律--讨论交流,验证规律--巩固拓展,应用规律”的教学模式进行教学。
1.创设情境,感知规律。
首先创设了动手操作的情境:让学生折一折纸条。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.研究素材,猜测规律。指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、讨论交流,验证规律
我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、3/6、4/8这些分数有什么关系?
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(3)从"1/2=2/4=3/6=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
最后,让学生完整地概括出分数的基本性质。这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
4.巩固拓展,应用规律。为了加深学生对分数基本性质的理解,激发学生的学习兴趣,我设计了一些练习让学生强化训练,巩固教学效果。