【精华】五年级数学说课稿范文合集6篇
作为一位不辞辛劳的人民教师,时常会需要准备好说课稿,编写说课稿助于积累教学经验,不断提高教学质量。怎么样才能写出优秀的说课稿呢?下面是小编收集整理的五年级数学说课稿6篇,希望能够帮助到大家。
五年级数学说课稿 篇1一、说教材
1、教材分析:
“梯形面积的计算”,是在学生掌握认识梯形特征,学会平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材的编排不同于平行四边形和三角形,没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积,使学生进一步学习用转化的方法思考。教材中的插图给出了转化的操作过程,同时继续渗透旋转和平移的思想,以便于学生理解。在操作的基础上,引导学生自己来总结梯形面积的计算公式,通过概括总结,提高学生的思维水平。进而再利用字母表述出新学的计算公式,以提高学生的抽象概括能力。最后通过例题进一步说明怎样应用梯形面积的计算公式来解决实际问题,并进行相应的练习。
2、教学目标:
1).知识目标:
使学生理解并掌握梯形面积的计算公式。
能正确地应用公式进行计算。
2).能力目标:
通过操作,培养学生的迁移类推能力和抽象概括能力。
3).情感目标:
培养学生善于动脑的良好学习习惯和对数学的学习兴趣。
3、教学重、难点:
教学重点:理解并掌握梯形的面积计算公式
教学难点:梯形面积公式的推导过程。
二、教法和学法:
教法:我采用了“活动探究”、“小组合作”“猜测—验证”等教学方法。使学生在数学学习活动中相互合作,主动探索,通过猜测,验证的方法,让学生通过实践操作来推导出梯形的面积计算公式并运用公式进行计算。
学法:与教法相结合,主要通过复习旧知——提出猜想——检验猜想——抽象概括——巩固提高——概括小结过程,使新知识转化为旧知,新知、旧知有机的融为一体,让学生把新知纳入已有的知识结构中去。
事实说话
三、教学过程
1、复习旧知,铺垫诱导
复习求平行四边形和三角形的面积。要求学生回忆三角形面积计算公式的推导过程。通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。
复习梯形的特征。拿出梯形的图形,回忆梯形的特征(上底,下底,高,面积)。
2、诱发猜想,主动探索
启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望。给出一般梯形(上底,下底,高),老师提出疑问:你们如何去求梯形面积。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。
生:打算仿照求三角形面积的办法,把梯形转化成已学过的图形,再计算梯形的面积。
生:仿照求三角形面积的办法,用两个相同的梯形合成一个平行四边形,再计算梯形的面积。
3、验证猜想,体验成功
根据猜想,给出多个相同或不同的梯形模具和记录表,小组合作动手操作,并让不同的验证方法在实物投影仪上加以演示,使学生感受“两个完全一样的梯形都可以拼成一个平行四边形”,同时并叙述梯形与转化后图形之间的关系。
平行四边形的底=梯形的
平行四边形的高=梯形的
4、抽象概括,总结提高
学生经过自主探索合作交流,有的感悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了
根据平行四边形面积=&nbs
p;
所以两个相等梯形面积=
因此一个梯形面积=
字母表示:
5、加深感受,完善结构
学生对一般梯形的面积推导已经有了深刻认识,但对梯形的知识结构还不够完善。这时老师就应继续引导学生对知识的深化。提出问题:是否任意梯形面积都可用这个公式计算呢?出示不同的等腰梯形,直角梯形的模具,让学生小组动手实验,自己研究,分析,记录。感知“任意两个完全一样的梯形都可以拼成一个平行四边形,并且任意的梯形面积=(上底+下底)×高÷2。”
6、巩固应用,强化提高
1)出示例3,理解题旨,学生尝试。
2)、练习p89做一做
设计意图:通过练习让学生更进一步掌握梯形的面积公式,同时运用梯形的面积公式解决一些实际问题。
7、总观全课,找到收获
利用2分钟时间小组内交流本堂课自己的收获,全班交流,教师及时补充。这节课在同学们自己的努力下有了这么多的收获,你们快乐吗?
同学们只要我们留意生活中很多地方都用到了梯形的知识,因此我们今天学习的内容在生活中是非常有用的,愿同学们都能用所学的知识来解释生活现象。
五年级数学说课稿 篇2教材分析:
本课属 “图形与几何”领域的内容。通过这部分的学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。同时充分发挥学生的自主探索、合作交流能力,再加上电脑操作的实践活动,让学生在不断尝试中激发求知欲,在不断摸索中陶冶情操。
学情分析:
学生在第一学段已经初步认识了一些简单的平面图形,并借助生活经验已形成了初步的空间观念。但思维还处于初级阶段,对于组合图形的面积还需要进一步认识和掌握,为了使学生能从感性认识抽象到理性思考,进一步发展其空间观念,构建新知。正好发挥了多媒体的优势,不仅解决了数学知识的高度抽象性和儿童思维发展具体形象性的矛盾,而且激发了学生学习的兴趣,使其主动参与,积极探究。学生不需要电脑操作,所以在多媒体教室进行教学。
教学目标:
1、使学生认识组合图形,能将组合图形转化为简单的图形,并通过归类比较,优化出简单的方法求出组合图形的面积。
2、使学生在解决问题的过程中体会解题策略、方法的多样性,发展观察、分析、推理、概括等多种能力,渗透“转化”的思想方法并培养学生的创新能力。
3、结合具体的例题感受计算组合图形面积的必要性,产生积极的数学学习情感,渗透化繁为简,化难为易的意识。
教学重点:
理解计算组合图形面积的多种方法。
< ……此处隐藏6869个字……基础。(二)教学重难点的确立
教学要求:
1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行估算、口算、笔算。
2、在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想。
3、使学生体验学习过程是一个不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。
教学重点:
学生自己探索获得“小数乘以小数”的计算方法。培养学生自主探索的能力,即独立获取知识的能力。
教学难点:
通过转化探索活动,使学生发现因数中小数位数与积中小数位数的对应关系,悟出“两个因数中的小数位数就是积中的小数的位数”。
二、说教法、学法
紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。
1、以学生为主体,发展学生的自主学习能力与思维能力。
数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现小数乘以小数的算理和算法,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先呈现房间平面图,启发学生获取信息,提出问题,列出算式说明及依据。教学计算要善于捕捉差距,关注生成。如:通过以上学生知识形成的过程与经验,紧接着出示阳台的面积是多少平方米,学生自主用已有的生活经验探索两位小数与两位小数相乘中两个因数与积的小数位数的关系。并在小组里讨论过程中学生自主生成,小数乘小数的计算法则,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。
2、正确把握教师主导与学生主体的关系。
本课力求在每一个环节的推进过程中都先让学生独立思考、独立探究,再让小组合作讨论探究,教师只起穿针引线的作用,给予学生应有的尊重与信任,提供其广阔的思考空间与交流机会,使其通过个体思考,小组或组际交流逐步得出自身认可的计算法则或规律,充分体现学生是课堂学习的主人。比如:教材重点组织学生探索笔算的方法,先告诉学生可以把竖式中的两个小数都看成整数来计算,再结合直观图示讨论,按整数相乘后怎样才能得到原有的数?启发学生理解,把两个因数看成整数,等于把原来两个因数分别乘以10得到整数,因数扩大100倍,积也就积也就相应扩大100倍。因此要得到原来算式的积,应用整数相乘的积反过来除以100。除此以外,学生可以通过单位换算把米化成分米得到的积后再换算成平方米。学生可以通过对笔算结果与估计结果的比较,判断笔算
结果是否合理,从而确认相应计算方法的正确性。在引入“3.6X2.8”时要求学生先用两种方法估算,并说明正确答案的范围,根据以上推断,让学生独立计算,为接下来笔算方法提供一种支持。
三、说教学程序
为充分体现以上的一些设想,本课的具体过程如下:
1、创设情境,引出可探索的“数学问题”。
数学来源于生活,通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到了数学与生活的密切联系,认识到计算确实是一种需要,产生急于要弄明白的求知心理,激起了探索的欲望与兴趣,为下一步的自主探究创造了良好的心理条件。如在创设情景引入的过程中,教师问:“你获取了哪些信息?”可以体现教师创造性使用教材,让学生自己提出问题,自己列式,自己解答,使枯燥知识变成善于学习的知识。
2、对算理和算法的自主探索。
在整个过程中,教师放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解释新问题的氛围。
(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,让教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。
(2)交流各自的算法与想法。在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8X3.6的结果最大是多少,然后让学生再进行计算。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。
3、运用规律来解决问题,让学生进一步感悟算理,获得方法。
运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。
4、运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。
小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。最后还安排了一个实践题:一种西装面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估算的数,在计算)并应用本节课学习的知识计算出物品的总价。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。
总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。